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Abstract This paper is the second part of our recent work [Isac and Németh, J Optim
Theory Appl (forthcoming)]. Our goal is now to present some new results related to the
non-existence of a regular exceptional family of elements (REFE) for a mapping and to show
how can they be applied to complementarity theory.
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1 Introduction

This paper is a continuation of our recent paper [10] in which we considered the notion of
regular exceptional family of elements (REFE) and we defined the class of REFE-acceptable
mappings, related to complementarity problems. A mapping f is called a REFE-acceptable
mapping with respect to a closed convex cone K in a Hilbert space H , if the non-existence
of a regular exceptional family of elements implies that the nonlinear complementarity prob-
lem NC P( f, K ) defined by f and K has a solution. Several classes of REFE-acceptable
mappings were given. A main result in [10] is a necessary and sufficient condition for the
non-existence of regular exceptional families of elements. In this paper we present a few
geometrical variants of this interesting result, and we establish some relations between the
necessary and sufficient conditions and the eigenvectors of the mapping. In this way we
obtain some existence theorems for nonlinear or linear complementarity problems.
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2 Preliminaries

We denote by (H, 〈·, ·〉) a Hilbert space and by K ⊂ H a closed convex cone in H , that is a
closed subset of H such that

1. K + K ⊆ K ,
2. λK ⊆ K , for all λ ∈ R+.

If the cone K also satisfies the property K ∩ (−K ) = {0} we say that K is a pointed convex
cone. If K is given, x ≤ y if and only if y − x ∈ K . The dual cone K ∗ of K is the closed
convex cone defined by

K ∗ = {y ∈ H | 〈x, y〉 ≥ 0 for all x ∈ K }.
Here ≥ is the inequality between real numbers and should not be confounded with the
vectorial relation defined by the cone. If D ⊂ H is a closed convex set, we denote by PD the
projection onto D, that is the mapping PD : H → D defined for every x ∈ H by: PD(x) is
the unique element in D such that ‖x − PD(x)‖ ≤ ‖x − y‖ for any y ∈ D. If f : H → H
is a mapping, the Nonlinear Complementarity Problem defined by f and the cone K is

NC P( f, K ) :
{

find x∗ ∈ K such that
f (x∗) ∈ K ∗ and 〈x∗, f (x∗)〉 = 0

.

If f has the form f (x) = Ax + b, where A is a linear continuous mapping from H into
H and b is an element in H , the problem NC P( f, K ) is called the Linear Complemen-
tarity Problem, defined by A, b and the cone K and it is denoted by LC P(A, b, K ). The
problem NC P( f, K ) is the model for many problems considered in Optimization, Econom-
ics, Mechanics and Engineering [1–3,5,6,11]. Generally, the complementarity problems are
related to equilibrium problems considered in Physics and Economics.

3 REFE-acceptable mappings

The notion of REFE-acceptable mapping was defined in [10]. For defining this notion we
need the definition of a regular exceptional family of elements due to Isac et al. [10].

Let (H, 〈·, ·〉) be a Hilbert space, K ⊂ H a closed convex cone and f : H → H a
mapping. We say that a family of elements {xr }r>0 ⊂ K is a regular exceptional family
of elements (shortly REFE) for f with respect to K , if for every real number r > 0, there
exists a real number µr > 0 such that the vector ur = µr xr + f (xr ) satisfies the following
conditions:

1. ur ∈ K ∗,
2. 〈ur , xr 〉 = 0,
3. ‖xr‖ = r .

Definition 3.1 We say that a mapping f : H → H is a REFE-acceptable mapping with
respect to a closed convex cone K ⊂ H if either the problem NC P( f, K ) has a solution, or
the mapping f has a REFE with respect to K .

From Definition 3.1 we deduce the following result.

Corollary 3.1 Let (H, 〈·, ·〉) be a Hilbert space, K ⊂ H a closed convex cone and f : H→H
a REFE-acceptable mapping with respect to K . If f is without a REFE with respect to K ,
then the problem NC P( f, K ) has a solution.
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We also recall the following definitions. We say that the mapping h : H → H is completely
continuous, if it is continuous and for any bounded set B ⊂ H , h(B) is relatively compact.
Let D be a nonempty subset of H . We say that a mapping f : D → H satisfies condition (S)1+
if any sequence {xn}n∈N ⊂ D with (w)-limn→∞ xn = x∗ ∈ H , (w)-limn→∞ f (xn) = u ∈ H
and

lim sup
n→∞

〈xn, f (xn)〉 ≤ 〈x∗, u〉

has a subsequence {xnk }k∈N convergent (in norm) to x∗ ((w)-lim denotes the weak limit).
A mapping f : H → H is scalarly compact with respect to a closed convex set D ⊂ H ,

if for any sequence {xn}n∈N ⊂ D weakly convergent to an element x∗ ∈ D there exists a
subsequence {xnk }k∈N such that lim supk→∞〈xnk − x∗, f (xnk )〉 ≤ 0.

Finally, we recall that a mapping f : H → H is called demicontinuous if for any sequence
{xn}n∈N ⊂ H convergent in norm to an element x∗ ∈ H , { f (xn)}n∈N is weakly convergent
to f (x∗).

We proved in [10] the following result.

Theorem 3.1 Let (H, 〈·, ·〉) be a Hilbert space, K ⊂ H a closed convex cone and f : H→H
a mapping. If f has a decomposition of the form f (x) = T1(x) − T2(x) such that:

1. T1 is demicontinuous, bounded and satisfies condition (S)1+,
2. T2 is demicontinuous and scalarly compact with respect to K ,

then f is REFE-acceptable with respect to K.

A long list of examples of REFE-acceptable mappings are given in [10]. Now, we add to that
list another few examples of REFE-acceptable mappings as a consequence of Theorem 3.1.

Let φ : R+ → R+ be a continuous mapping. We say that a mapping T : H → H is a
φ-contraction if the following conditions are satisfied:

(i) ‖T (x) − T (y)‖ ≤ φ(‖x − y‖) for any x, y ∈ H .
(ii) φ(t) < t for any t ∈ R+ \ {0}.
We say that a mapping T : H → H is antimonotone if for any x, y ∈ H we have

〈x − y, f (x) − f (y)〉 ≤ 0.

Theorem 3.2 Let (H, 〈·, ·〉) be a Hilbert space, K ⊂ H a closed convex cone and f : H→H
a mapping. If f has a decomposition of the form f (x) = T1(x)− T2(x), where the mappings
T1, T2 : H → H satisfy the following conditions:

1. T1 is strongly monotone or T1 = I − T , where T : H → H is a φ-contraction,
2. T2 is antimonotone or T2 = h − g, where h is completely continuous and g is monotone

(h, g : H → H),
3. T1, T2 are demicontinuous,

then f is REFE-acceptable with respect to K .

Proof If T1 satisfies one of the assumptions then T1 satisfies condition (S)1+ (see [8] and
[4]). If T2 satisfies one of the assumptions then T2 is scalarly compact (see [7]). Hence, the
theorem is a consequence of Theorem 3.1. 
�
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4 Mappings without REFE and existence theorems for complementarity problems

Definition 4.1 Let (H, 〈·, ·〉) be a Hilbert space and f : H → H a mapping. The orthogo-
nalizer of f is the mapping O( f ) : H → H defined by

O( f )(x) = ‖x‖2 f (x) − 〈 f (x), x〉x .

It is easy to see that 〈O( f )(x), x〉 = 0, for all x ∈ H .

By Definition 4.1, Theorems 7.1 and 7.2 proved in [10] have the following reformulation:

Theorem 4.1 Let (H, 〈·, ·〉) be a Hilbert space, K ⊂ H a closed convex cone, f : H → H
a mapping and F = O( f ) the orthogonalizer of f . A necessary and sufficient condition
for the mapping f to have the property of being without a REFE with respect to K is the
following: There is a ρ > 0 such that for any x ∈ K with ‖x‖ = ρ at least one of the
following conditions holds:

1. 〈 f (x), x〉 ≥ 0,
2. x is not a solution of NC P(F, K ).

If f is REFE-acceptable, then the problem NC P( f, K ) has a solution.

Proof It is enough to prove that condition 2 of Theorem 4.1 is equivalent to condition 2 of
Theorem 7.1, [10]. Indeed, since 〈F(x), x〉 = 0, for all x ∈ H , condition 2 of Theorem 4.1
is equivalent to F(x) /∈ K ∗, for any x ∈ K with ‖x‖ = ρ, i.e., there is a y ∈ K such that
〈F(x), y〉 < 0, for any x ∈ K with ‖x‖ = ρ. But this is exactly condition 2 of Theorem 7.1,
[10]. 
�
Lemma 4.1 Let (H, 〈·, ·〉) be a Hilbert space and f : H → H a mapping and F = O( f )

its orthogonalizer. Then, x ∈ H is an eigenvector of f if and only if x �= 0 and F(x) = 0.
The eigenvalue corresponding to an eigenvector x ∈ H of f is

〈 f (x), x〉
‖x‖2 .

Proof Suppose that x is an eigenvector of f (x). Then, x �= 0 and

f (x) = λx, (1)

where λ is the eigenvalue corresponding to the Eigenvector x . Multiplying (1) by x , we obtain

λ = 〈 f (x), x〉
‖x‖2 .

Hence,

f (x) = 〈 f (x), x〉
‖x‖2 x,

from which it follows that F(x) = 0. Conversely if x �= 0 and F(x) = 0, then

f (x) = 〈 f (x), x〉
‖x‖2 x,

and therefore x is an eigenvector of f with corresponding eigenvalue

〈 f (x), x〉
‖x‖2 .


�
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Remark 4.1 We remark that by the proof of Theorem 4.1 the solutions of NC P(F, K ) coin-
cide with the feasible points of NC P(F, K ). So in every result of the paper a solution of
NC P(F, K ) could be replaced by a feasible point of NC P(F, K ).

Recall the following definition.

Definition 4.2 Let H, 〈·, ·〉 be a Hilbert space and K ⊂ H a closed convex cone. The subset
U of the closed convex cone K is a face of K if it is a closed convex cone and if from x ∈ U ,
y ∈ K and x − y ∈ K , it follows that y ∈ U . If “≤” is the preorder induced by K, this can
be written as: If x ∈ U and 0 ≤ y ≤ x , then y ∈ U .

Lemma 4.2 Let H, 〈·, ·〉 be a Hilbert space and K ⊂ H a closed convex cone. If U is a face
of K and U⊥ = {z ∈ K ∗ | 〈x, z〉 = 0 for all x ∈ U }, then U⊥ is a face of K ∗.

Proof By using the definition of a cone, it can be easily shown that U⊥ is a cone. Denote
by “≤∗” the preorder induced by K ∗, and let z ∈ U⊥ and t ∈ H such that 0 ≤∗ t ≤∗ z.
Then, z − t ∈ K ∗ and t ∈ K ∗. Hence, for all x ∈ U ⊂ K , we have 〈x, z − t〉 ≥ 0, or
0 ≤ 〈x, t〉 ≤ 〈x, z〉 = 0. Thus, 〈x, t〉 = 0, for all x ∈ U . Therefore, t ∈ U⊥, proving that
U⊥ is a face of K ∗. 
�
Definition 4.3 Let H, 〈·, ·〉 be a Hilbert space and K ⊂ H a closed convex cone. If U is a face
of K , then U⊥ = {z ∈ K ∗ | 〈x, z〉 = 0 for all x ∈ U } is called the orthogonal complement
face to U .

Lemma 4.3 Let H, 〈·, ·〉 be a Hilbert space, K ⊂ H a closed convex cone and x ∈ K . Then
the minimal face (with respect to set inclusion) of K containing x is V = {y ∈ H : ∃λ ≥
0 such that 0 ≤ y ≤ λx}.
Proof First we prove that V is a face of K . By using the definition of a cone, it can be easily
shown that V is a cone. Let y ∈ V and z ∈ H such that 0 ≤ z ≤ y. Then, there is a λ ≥ 0 such
that 0 ≤ z ≤ y ≤ λx . Hence, by the definition of V , z ∈ V . Therefore, V is a face of K . Let
W be another face of K containing x . It remains to show that V ⊂ W . Consider an arbitrary
point y ∈ V . Then, there is a λ ≥ 0 such that 0 ≤ y ≤ λx . If λ = 0, then y = 0 ∈ W .
Suppose now, that λ �= 0. Since the preorder induced by a cone is invariant under the mul-
tiplications with positive scalars, the latter inequality implies that 0 ≤ (1/λ)y ≤ x . Since
x ∈ W and W is a face of K , we obtain that (1/λ)y ∈ W . Since W is a cone, it follows that
y ∈ W . We showed that in all cases y ∈ V implies y ∈ W . Therefore, V ⊂ W . 
�
Lemma 4.4 Let H, 〈·, ·〉 be a Hilbert space, K ⊂ H a closed convex cone, x ∈ K and V
the minimal face of K containing x. If y ∈ K ∗ such that 〈x, y〉 = 0, then y ∈ V⊥.

Proof We have to prove that 〈y, z〉 = 0 for all z ∈ V . Since z ∈ V , there is a λ ≥ 0 such that
0 ≤ z ≤ λx . Thus, z ∈ K and λx − z ∈ K . Since y ∈ K ∗, it follows that 〈y, λx − z〉 ≥ 0
and 0 = λ〈y, x〉 ≥ 〈y, z〉 ≥ 0. Therefore, 〈y, z〉 = 0 for all z ∈ V . 
�
Theorem 4.2 Let (H, 〈·, ·〉) be a Hilbert space, K ⊂ H a closed convex cone, f : H → H
a mapping and F = O( f ) the orthogonalizer of f . Then, the mapping f is without a REFE
with respect to K if and only if there is a ρ > 0 such that for any x ∈ K with ‖x‖ = ρ we
have:

1. If x ∈ Int K and x is an eigenvector of f , then its corresponding eigenvalue is nonneg-
ative,
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2. If x ∈ ∂K and 〈 f (x), x〉 < 0, then F(x) /∈ V⊥, where V is the minimal face of K
containing x and V⊥ is the orthogonal complement face of V with respect to K .

If f is REFE-acceptable, then the problem NC P( f, K ) has a solution.

Proof By Theorem 4.1 f is without a REFE if and only if there is a ρ > 0 such that for any
x ∈ K with ‖x‖ = ρ at least one of the conditions 1 and 2 of Theorem 4.1 holds. Suppose
that x ∈ K and ‖x‖ = ρ. Let F be the orthogonalizer of f . We will show that if x ∈ Int K
and F(x) �= 0 (which by Lemma 4.1 is equivalent to x not being an eigenvector of f ), then
it follows that F(x) /∈ K ∗. Indeed, if we suppose that F(x) ∈ K ∗, then from x ∈ Int K for
any y ∈ H with sufficiently small norm x + y, x − y ∈ K . Thus, from 〈F(x), x + y〉 ≥ 0
and 〈F(x), x − y〉 ≥ 0 it follows that 〈F(x), y〉 = 0. Let z ∈ H be an arbitrary vector. By
multiplying with a sufficiently small nonzero constant λ we obtain 〈F(x), λz〉 = 0. There-
fore, 〈F(x), z〉 = 0, for any z ∈ H . By choosing z = F(x), we obtain F(x) = 0 which is a
contradiction. Therefore, F(x) /∈ K ∗, i.e., x is not a solution of NC P(F, K ). Hence, in this
case condition 2 of Theorem 4.1 is satisfied. If x ∈ Int K and F(x) = 0, then x is a solution
of NC P(F, K ). Hence, in this case condition 2 of Theorem 4.1 cannot hold. Moreover, by
Lemma 4.1, x is an eigenvector of f with corresponding eigenvalue

〈 f (x), x〉
ρ2 .

Hence, in this case condition 1 of Theorem 4.1 holds if and only if x is an eigenvector of f
with nonnegative eigenvalue.

Now, suppose that x ∈ ∂K . If 〈 f (x), x〉 ≥ 0, then condition 1 of Theorem 4.1 holds.
Suppose that 〈 f (x), x〉 < 0. Then, condition 1 of Theorem 4.1 cannot hold. Since 〈F(x), x〉 =
0, Lemma 4.4 implies that F(x) ∈ K ∗ is equivalent to F(x) ∈ V⊥. Thus, condition 2 of
Theorem 4.1 is equivalent to F(x) /∈ K ∗ which is equivalent to F(x) /∈ V⊥. 
�
Remark 4.2 Theorem 4.2 is true even if the interior of K is empty. In this case only condition
2 has to be considered. The same remark holds for any subsequent result in which condition
1 contains the interior of a cone.

Let (Rn, 〈·, ·〉) be the n-dimensional euclidean space with the canonical scalar product
and

R
n+ = {x = (x1, . . . , xn) ∈ R

n | x1 ≥ 0, . . . , xn ≥ 0}
the positive orthant, which is a closed convex cone. The interior of R

n+ is

R
n++ = {x = (x1, . . . , xn) ∈ R

n | x1 > 0, . . . , xn > 0}
The boundary of R

n+ is

∂R
n+ = R

n+ \ R
n++ = {x = (x1, . . . , xn) ∈ R

n+ | xi = 0, for some i ∈ {1, . . . , n}}
Corollary 4.1 Let f : R

n → R
n be a mapping and F = O( f ) the orthogonalizer of f .

Then, the mapping f is without a REFE with respect to the positive orthant R
n+ if and only

if there is a ρ > 0 such that for any x ∈ R
n+ with ‖x‖ = ρ we have:

1. if x ∈ R
n++ and x is an eigenvector of f , then its corresponding eigenvalue is nonnega-

tive,
2. if x ∈ ∂R

n+ and 〈 f (x), x〉 < 0, then F(x) /∈ V⊥, where V is the minimal face of R
n+

containing x and V⊥ is the orthogonal complement face of V with respect to R
n+.
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By Lemma 4.1, [10] and Corollary 4.1, we have:

Corollary 4.2 Let f : R
n → R

n be a continuous mapping and F = O( f ) the orthogonalizer
of f . If there is a ρ > 0 such that for any x ∈ R

n+ with ‖x‖ = ρ we have:

1. if x ∈ R
n++ and x is an eigenvector of f , then its corresponding eigenvalue is nonnega-

tive,
2. if x ∈ ∂R

n+ and 〈 f (x), x〉 < 0, then F(x) /∈ V⊥, where V is the minimal face of R
n+

containing x and V⊥ is the orthogonal complement face of V with respect to R
n+,

then the problem NC P( f, R
n+) has a solution.

Corollary 4.3 Let (H, 〈·, ·〉) be a Hilbert space, K ⊂ H a closed convex cone, and f : H→H
a REFE-acceptable mapping. If there is a ρ > 0 such that for any x ∈ K with ‖x‖ = ρ we
have:

1. If x ∈ Int K and x is an eigenvector of f , then its corresponding eigenvalue is nonneg-
ative,

2. If x ∈ ∂K and 〈 f (x), x〉 < 0, then f (x) /∈ V⊥ − V , where V is the minimal face of K
containing x and V⊥ ⊂ K ∗ is the orthogonal complement face of V with respect to K ,

then the problem NC P( f, K ) has a solution. Particularly, if H = R
n and K = R

n+, then
conditions 1 and 2 become

1′. If x ∈ R
n++ and x is an eigenvector of f , then its corresponding eigenvalue is nonneg-

ative,
2′. If x ∈ ∂R

n+ and 〈 f (x), x〉 < 0, then f (x) /∈ V⊥ − V , where V is the minimal face of
R

n+ containing x and V⊥ is the orthogonal complement face of V with respect to R
n+.

Proof Let F = O( f ) be the orthogonalizer of f . We shall use Theorem 4.2. Condition 1 of
Corollary 4.3 coincides with condition 1 of Theorem 4.2. Hence, it is enough to prove that
condition 2 of Corollary 4.3 implies condition 2 of Theorem 4.2. Suppose that condition 2
of Corollary 4.3 is satisfied and let x ∈ ∂K with ‖x‖ = ρ such that 〈 f (x), x〉 < 0. Then,
f (x) /∈ V⊥ − V , where V is the minimal face of K containing x and V⊥ is the orthogonal
complement face of V with respect to K . We have to prove that F(x) /∈ V⊥. Indeed, if
we suppose to the contrary that F(x) ∈ V⊥, then ρ2 f (x) − 〈 f (x), x〉x ∈ V⊥, which by
using relation 〈 f (x), x〉 < 0 implies that f (x) ∈ V⊥ − V (since the cones V and V⊥ are
invariant under the multiplication by positive scalars). But this is a contradiction. Therefore,
F(x) /∈ V⊥. 
�
Remark 4.3 With the notations of Corollary 4.3 Condition 2′, if x �= 0 and f (x) ∈ V⊥ − V ,
then 〈 f (x), x〉 < 0. Indeed, suppose that f (x) = y − z, where y ∈ V⊥ and z ∈ V . Then,
〈 f (x), x〉 = 〈y − z, x〉 = 〈y, x〉 − 〈z, x〉 = −〈z, x〉. Since V is the minimal face containing
x , x is in the relative interior of V . Hence, 〈z, x〉 > 0. Therefore, 〈 f (x), x〉 < 0.

For any x ∈ R
n let

I−(x) = {i ∈ {1, 2, . . . , n} | xi < 0},
I0(x) = {i ∈ {1, 2, . . . , n} | xi = 0},
I+(x) = {i ∈ {1, 2, . . . , n} | xi > 0},

where x = (x1, . . . , xn). Then, Corollary 4.3 has the following consequence:
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Corollary 4.4 Let f : R
n → R

n be a continuous mapping. If there is a ρ > 0 such that for
any x ∈ R

n+ with ‖x‖ = ρ we have:

1. If x ∈ R
n++ and x is an eigenvector of f , then its corresponding eigenvalue is nonneg-

ative,
2. If x ∈ ∂R

n+ and 〈 f (x), x〉 < 0, then either I0(x) �= I+( f (x)) or I+(x) �= I−( f (x)),

then the problem NC P( f, R
n+) has a solution.

Proof We shall use Corollary 4.3. It is enough to prove that condition 2 of Corollary 4.4
implies condition 2′ of Corollary 4.3. It is easy to see that y ∈ V⊥ if and only if for any x ∈ V ,
we have I0(y) = I+(x), where V and V⊥ are defined in Corollary 4.3. Of course, this last
relation is equivalent to I+(y) = I0(x). Hence, if f (x) ∈ V⊥ − V , then I0(x) = I+( f (x))

and I+(x) = I−( f (x)). Thus, if either I0(x) �= I+( f (x)) or I+(x) �= I−( f (x)), then
f (x) /∈ V⊥ − V . Therefore condition 2 of Corollary 4.4 implies condition 2′ of Corollary
4.3. 
�

Corollary 4.4 can be written more explicitly as follows:

Corollary 4.5 Let f = ( f1, . . . , fn) : R
n → R

n be a continuous mapping. If there is a
ρ > 0 such that for any x ∈ R

n+ with ‖x‖ = ρ we have:

1. If x ∈ R
n++ and x is an eigenvector of f , then its corresponding eigenvalue is nonnega-

tive,
2. If x = (x1, . . . , xn) ∈ ∂R

n+ and 〈 f (x), x〉 < 0, then ∃i0 ∈ {1, . . . , n} such that

xi0 = 0 ∧ fi0(x) ≤ 0 ∨ xi0 > 0 ∧ fi0(x) ≥ 0,

where ∧ and ∨ denotes the “logical and” and “logical or”, respectively, then the problem
NC P( f, R

n+) has a solution.

Proof Condition 2 of Corollary 4.4 is equivalent to

xi0 = 0 ∧ fi0(x) ≤ 0 ∨ xi0 > 0 ∧ fi0(x) > 0

∨ xi0 > 0 ∧ fi0(x) ≥ 0 ∨ xi0 = 0 ∧ fi0(x) < 0,

which by using the associativity of ∨ and the distributivity of the ∧ with respect to ∨ can be
written as

xi0 = 0 ∧ ( fi0(x) ≤ 0 ∨ fi0(x) < 0) ∨ xi0 > 0 ∧ ( fi0(x) > 0 ∨ fi0(x) ≥ 0),

or by simplification

xi0 = 0 ∧ fi0(x) ≤ 0 ∨ xi0 > 0 ∧ fi0(x) ≥ 0.


�
Denote by I the identity operator of R

n , i.e., I (x) = x , for all x ∈ R
n .

Lemma 4.5 If f (x) = Ax + b, where A : R
n → R

n is a linear mapping and b is a nonzero
constant vector, then λ is an eigenvalue of f if and only if is not an eigenvalue of A. If λ is
an eigenvalue of f , then x = (A − λI )−1b is the only eigenvector corresponding to λ.

Proof If λ is an eigenvalue of f and x is an eigenvector corresponding to λ, then Ax+b = λx ,
i.e.,

(A − λI )x = b. (2)
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This linear system of equations has a solution if and only if det(A − λI ) �= 0, i.e., λ is
not an eigenvalue of A. In this case equation (2) implies that x = (A − λI )−1b is the only
eigenvector corresponding to λ. 
�

By Lemma 4.5 and Corollary 4.5 we have as follows:

Corollary 4.6 Let f (x) = Ax + b, where A : R
n → R

n is a linear mapping with entries
ai j , i, j ∈ {1, . . . , n} with respect to the canonical basis of R

n and b = (b1, . . . , bn) is a
nonzero constant vector. If there is a ρ > 0 such that for any x ∈ R

n+ with ‖x‖ = ρ we have:

1. If λ is not an eigenvalue of A and x = (A − λI )−1b ∈ R
n++, then λ is nonnegative,

2. If x = (x1, . . . , xn) ∈ ∂R
n+ and

∑n
i, j=1 ai j xi x j +∑n

i=1 bi xi < 0, then ∃i0 ∈ {1, . . . , n}
such that

xi0 = 0 ∧
n∑

j=1

ai0 j x j + bi0 ≤ 0 ∨ xi0 > 0 ∧
n∑

j=1

ai0 j x j + bi0 ≥ 0 ,

then the linear complementarity problem LC P(A, b, R
n+) has a solution.

From a result proved in [9], in the case of pseudomonotone REFE-accep-table mappings
the nonexistence of REFE is equivalent to the solvability of the corresponding nonlinear
complementarity problem. Therefore, by Lemma 4.1, [10] and Theorem 4.2 we have as
follows:

Theorem 4.3 Let (H, 〈·, ·〉) be a Hilbert space, K ⊂ H a closed convex cone, Let f : H→H
be a REFE-acceptable pseudomonotone mapping and F = O( f ) the orthogonalizer of f .
Then, the problem NC P( f, K ) has a solution if and only if there is a ρ > 0 such that for
any x ∈ K with ‖x‖ = ρ we have:

1. If x ∈ Int K and x is an eigenvector of f , then its corresponding eigenvalue is nonneg-
ative,

2. If x ∈ ∂K and 〈 f (x), x〉 < 0, then F(x) /∈ V⊥, where V is the minimal face of K con-
taining x and V⊥ ⊂ K ∗ is the orthogonal complement face of V with respect to K .

Corollary 4.7 Let f : R
n → R

n be a continuous pseudomonotone mapping and F = O( f )

the orthogonalizer of f . Then, the problem NC P( f, R
n+) has a solution if and only if there

is a ρ > 0 such that for any x ∈ R
n+ with ‖x‖ = ρ we have:

1. If x ∈ R
n++ and x is an eigenvector of f , then its corresponding eigenvalue is nonneg-

ative,
2. If x ∈ ∂R

n+ and 〈 f (x), x〉 < 0, then F(x) /∈ V⊥, where V is the minimal face of R
n+

containing x and V⊥ is the orthogonal complement face of V with respect to R
n+.
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